Um die Wechselwirkung zwischen Luftverschmutzung und dem südasiatischen Monsun zu untersuchen, haben Wissenschaftlerinnen und Wissenschaftler in einer Flugzeugmission 100.000 Kilometer zurückgelegt. Mit an Bord waren auch Messgeräte des Karlsruher Instituts für Technologie (KIT). Die Messkampagne koordinierte das Max-Planck Institut für Chemie. Die Mission zeigte unter anderem: Der Monsun reinigt die Luft von einem Großteil der Schadstoffe, verteilt den Rest aber über den gesamten Globus. Ihre Ergebnisse stellen die Forscher nun im Fachjournal Science vor.
Um die Wechselwirkung zwischen Luftverschmutzung und dem südasiatischen Monsun zu untersuchen, haben Wissenschaftlerinnen und Wissenschaftler in einer Flugzeugmission 100.000 Kilometer zurückgelegt.
Mit an Bord waren auch Messgeräte des Karlsruher Instituts für Technologie (KIT). Die Messkampagne koordinierte das Max-Planck Institut für Chemie. Die Mission zeigte unter anderem: Der Monsun reinigt die Luft von einem Großteil der Schadstoffe, verteilt den Rest aber über den gesamten Globus. Ihre Ergebnisse stellen die Forscher nun im Fachjournal Science vor.
Atmosphärische Auswirkungen der Luftverschmutzung gemessen
Die atmosphärischen Auswirkungen der vom Menschen verursachten Luftverschmutzung aus der Verbrennung von fossilen Brennstoffen und Biomasse in Südasien wird während der Trockenzeit Jahr für Jahr auf Satellitenbildern offensichtlich: Zwischen Dezember und März zieht sichtbar verschmutzte Luft, in der wissenschaftlichen Literatur auch einfach als „atmospheric brown cloud“ bekannt, von Indien aus über den Indischen Ozean.
Verbesserung nicht in Sicht
Eine Verbesserung dieser Situation ist nicht in Sicht. Im letzten Jahrzehnt sind die Stickoxid- und Schwefeldioxidemissionen Südasiens vielmehr um fünfzig Prozent angestiegen. Umso dringender die Frage, was eigentlich mit den Schadstoffen während des südasiatischen Monsuns, also im Sommer, geschieht. Der Monsun entsteht, sobald sich Luftmassen über dem indischen Subkontinent in den Sommermonaten aufheizen und die warme Luft aufsteigt. Gleichzeitig wird feuchte Ozeanluft angesaugt, was zu starken Regenfällen und Gewittern führt. Wenn sich das riesige Wetterphänomen von Juni bis Oktober mit einem Wirkungsbereich vom Mittelmeerraum bis in den Pazifik ausbreitet, verschwindet die braune Wolke in dessen Aufwinden und Gewittersystemen.
Wo verbleiben die Schadstoffe?
Neue Erkenntnisse über den Verbleib der Schadstoffe liefert nun das internationale Projekt OMO (Oxidation Mechanism Observations), an dem auch Forscherinnen und Forscher des KIT mitarbeiten und welches das Max Planck Instituts für Chemie in Mainz koordiniert. Demnach wird ein Teil der Verschmutzung durch chemische Reaktionen in wasserlösliche Substanzen umgewandelt und mit dem Regen regelrecht herausgewaschen. „Aufgrund der hohen Feuchtigkeit und vielen Blitzen bilden sich besonders viele Hydroxylradikale. Das sind besonders reaktionsfreudige Moleküle aus Wasserstoff und Sauerstoff, die wie ein kraftvolles Waschmittel für die Atmosphäre wirken“, sagt Dr. Andreas Zahn vom Institut für Meteorologie und Klimaforschung (IMK) des KIT. Diese Radikale (OH), erläutert Zahn, oxidierten zunächst die Luftschadstoffe, die sich dann in Form weniger schädlichen Verbindungen im Wasser lösten und dann auf die Erde abregnen, vergleichbar mit dem bekannten „sauren Regen“. Allerdings werden dabei nicht alle Schadstoffe ausgewaschen: „Ein Teil der Luftverschmutzung verbleibt in der Luft und landet sogar in der Stratosphäre oberhalb von 20 Kilometern Höhe.“ Sobald die Schadstoffe diese Höhe erreichten, würden sie auf der ganzen Welt verteilt. Das betrifft nach Erkenntnissen aus dem Forschungsprojekt etwa zehn Prozent des schädlichen Schwefeldioxids aus Südasiens.
Forschungsflüge
Für ihre Forschung nutzten die Wissenschaftlerinnen und Wissenschaftler in diesem Projekt 2015 das Forschungsflugzeug HALO (High Altitude – Long Range) des Deutschen Zentrums für Luft- und Raumfahrt, um zwischen Zypern und den Malediven in einer Höhe von 9 bis 15 Kilometern über mehrere Monate ihre Messungen durchzuführen. Dabei bestimmten sie neben dem OH zahlreiche weitere chemische Verbindungen wie Schwefel- und Stickoxide, Ozon, Aerosolpartikel, chlorhaltige Moleküle, Kohlenwasserstoffe organische Verbindungen sowie die wichtigsten Treibhausgase, um Aufschluss über die chemischen Vorgänge in der Atmosphäre zu erhalten.
Spezielle Instrumente
Die Atmosphärenforscher des KIT hatten für das Forschungsflugzeug HALO zwei besonders leichte und empfindliche Instrumente entwickelt. Eins davon hat die Konzentration von Ozon mit einer hohen zeitlichen Auflösung von zehn Messungen pro Sekunde analysiert. Ozon dient dabei als Indikator für die Reaktionsfreudigkeit der Luft sowie als Marker für das Erreichen der ozonreichen Stratosphäre. Das zweite Instrument, ein komplexes chemisches Massenspektrometer, hat kleinste Spuren flüchtiger organischer Verbindungen wie Aceton erfasst, das eine wichtige Quelle für die Hydroxylradikale darstellt. Mit diesem konnte auch die Herkunft und der Verbleib der „braunen Wolke“ untersucht werden: „Wir konnten nachweisen, dass Indien eine bedeutende Quelle der Schadstoffe ist, insbesondere von organischen Verbindungen“, sagt der für dieses Instrument verantwortliche Wissenschaftler Dr. Marco Neumaier. Bisher wurde der Ursprung vor allem in China verortet.
Originalpublikation
J. Lelieveld, E. Bourtsoukidis, C. Brühl, H. Fischer, H. Fuchs, H. Harder, A. Hofzumahaus, F. Holland, D. Marno, M. Neumaier, A. Pozzer, H. Schlager, J. Williams, A. Zahn, H. Ziereis. The South Asian monsoon – pollution pump and purifier. DOI: 10.1126/science.aar2501
Das aktuelle Paper wurde am 14. Juni 2018 online vom Jounal Science veröffentlicht:
http://science.sciencemag.org/content/early/2018/06/13/science.aar2501
Hinterlasse einen Kommentar